Basic Revision Aims:

5.1. Diffusion & surface area to volume ratio

GCSE Review 5 - Transport in Cells & Gas Exchange

What has been reached?
What happens when the particles reach the same concentration on both sides of a membrane?
b) across or through a between the outside and inside of cells.
a) between different regions within a or a or or
Diffusion of particles can take place:
•
•
It is important to remember that the particles:
The particles move down a
to
In diffusion, particles move from
What do particles in a liquid and a gas do constantly?
5.1. Diffusion & Surface Area to Volume Ratio
Fick's Law (Extending Further) https://www.bbc.co.uk/bitesize/guides/zyjbqhv/revision/6 (Edexcel)
Gas Exchange https://www.bbc.co.uk/bitesize/guides/zyptv9q/revision/2 (AQA) https://www.bbc.co.uk/bitesize/guides/zyjbqhv/revision/1 (Edexcel)
Resources Use the GCSE Bitesize sections below and your GCSE textbook, class notes and GCSE revision guide. Transport in Cells https://www.bbc.co.uk/bitesize/guides/zc7k2nb/revision/1 (AQA) https://www.bbc.co.uk/bitesize/guides/z22vw6f/revision/1 (Edexcel)
Extending Further: 5.4.2. Fick's Law
5.3. Active Transport 5.4.1. Gas exchange in the lung

GCSE Review 5

The rate of diffusion can be affected by a number of things. For each factor, describe how a specific change (i.e. increase or decrease) in the factor affects the rate of diffusion.

Concentration gradient:
Temporature
Temperature:
Surface area of the cell membrane:
Surface Area to Volume Ratio
Explain why unicellular organisms (i.e. bacteria) and simple multicellular organisms (i.e. mosses) car survive by just taking in substances over their body surface.
What happens as organisms increase in size?
Surface area to volume ratio can be calculated by dividing an organism's total surface area by

Surface area to volume ratio can be calculated by **dividing an organism's total surface area by its volume**. Always express the ratio in its lowest form as n:1, where n=1 the surface area. Complete the table below, the first cube has been completed for you:

Cube Size (cm)	Surface Area	Volume	SA:V Ratio
1	1 cm x 1 cm x 6	1 x 1 x 1 = 1 cm ³	6:1
2			
3			
4			

Describe the relationship between the increase in the volume and the	
5.2. Osmosis	
Osmosis is	
A dilute solution contains a concentration of water molecule	
A concentrated solution contains aconcentration of water n What happens when the concentration of water is the same on both s	
<u>Plant Cells</u>	
Plant cells have a strong	outside the cell membrane.
Describe its features	
Describe the movement of water molecules and what happens to plansolutions with different concentrations of solute.	t cells when they are put in
Pure water / no solute (Hypotonic)	Hypotonic
	H ₂ O H ₂ O
	Turgid
A concentrated solution (Isotonic)	Isotonic
	H ₂ O H ₂ O
	Flaccid

A very concentrated solution (Hypertonic)		H ₂ O	Hypertonic
Animal Cells Describe the movement of water molecules and what happens to animal cells when they are put in solutions with different concentrations of solute.	Hypertonic	Isotonic	Hypotonic
Pure water / no solute (Hypotonic)	H ₂ O	H ₂ O H ₃ O	н,о
Normal / concentrated solution (Isotonic)			
A very concentrated solution (Hypertonic)			
Why do animal cells behave so differently to	plant cells?		
5.3. Active Transport Active transport is			
Substances have been moved from a			

	d when plants use o	•		
Describe how an	d when animals use	active transport	•	

Comparison of the 3 Processes

Complete the table below to compare diffusion, osmosis and active transport:

Process	Descriptions	Substances moved	Energy required?
Diffusion			
Osmosis			
Active Transport			

5.4.1 Gas Exchange in the Lungs

The Need for Exchange Surfaces & Transport Systems

On page 2 you looked at the relationship between increasing the volume of an organism and its effect on its surface area.

Let's remind ourselves ...

Small Organisms (e.g. bacteria)
Their surface area: volume ratio is
How do these organisms exchange essential and waste substances with their environment?
Why is this process enough to keep them alive?
Important:
For organisms, the size of their surface area defines
However, the size of their volume defines
L Oiaa (bi-ada)
Larger Organisms (e.g. birds)
Their surface area: volume ratio is
Complete the table below to identify the problems faced by larger organisms and their solutions:

	Problem	Solution
Their surface area does not increase as fast as the volume		
Their volume increases		

GCSE Review 5

In summary, in order for larger organisms to move	substances, such as oxygen, around their body
they need	such as the
What do larger organisms also need?	
All exchange surfaces are adapted to	
The Lungs The human lungs provide an exchange surface adap	ted for
•	
•	
What is ventilation?	
Label the diagram below of the lungs and their sur	rounding anatomy:
raper the diagram below of the langs and their sun	i dunanny ana idiny.

The exchange of gases occurs between the

Label the diagram and the arrows on the cross sectional image below to show the exchange of gases:

Adaptations of the Lungs

There are 3 important factors that affect the rate of diffusion across an exchange surface:

- Surface area
- Diffusion distance
- Concentration gradient

Explain how a change in each leads to a faster rate of diffusion:

Surface area:	
Diffusion distance:	
Concentration gradient:	
Complete the table below to the lungs is such an efficient	link each adaptation of the lung to one of the 3 factors to explain how gas exchange organ:
Adaptation	How the adaptation increases rate of diffusion
Many alveoli and capillaries	
Small size of alveoli	
Walls of alveoli and capillaries are 1 cell thick	
Film of moisture in alveoli	
Ventilation of air in the alveoli	
Blood flow in the capillaries	

5.4.2. Fick's Law (Extending Further)

The concentration difference is doubled

The thickness of the membrane is doubled

Fick's Law describes	
Fick's Law states that	
	y
	x
	Directly proportional
Write Fick's Law in the space below:	
	More Y Less Y
State the effect on rate of diffusion in the following three	Less X More X
situations:	Inversely proportional (simple representation)
The surface area is doubled	(Simple 1 epi esemunon)
	•••

Well done! You have completed all of the GCSE review packs to help you prepare for the first part of the A-level Biology course!

Make sure that you bring all the completed packs with you when you come to College so that you can use them to help you!