Expanding Polynomials (Answers)

Expanding (Multiplying) Brackets

Expand and simplify:

1.
$$5(2x - 7)$$

$$10x - 35$$

2.
$$8x(2x + 3)$$

$$16x^2 + 24x$$

3.
$$7a(3a + 2b - 4)$$

$$21a^2 + 14ab - 28a$$

4.
$$5(2x + 1) + 3(x + 4)$$

$$10x + 5 + 3x + 12 = 13x + 17$$

5.
$$8y(y-4)-2y(3-y)$$

$$8y^2 - 32y - 6y + 2y^2 = 10y^2 - 38y$$

Remember that a negative times a negative gives a positive!

6.
$$(3x + 2)(x + 5)$$

$$3x^2 + 15x + 2x + 10 = 3x^2 + 17x + 10$$

7.
$$(x-4)(3x-9)$$

$$3x^2 - 9x - 12x + 36 = 3x^2 - 21x + 36$$

8.
$$(a + b)(b - c)$$

$$ab - ac + b^2 - bc$$

Note that it is convention to write expressions in decreasing powers, so this might be written instead as $b^2 + ab - ac - bc$

9.
$$(3x + 2)^2$$

$$(3x + 2)(3x + 2) = 9x^2 + 6x + 6x + 4$$

= $9x^2 + 12x + 4$

A common mistake is to simply square both terms. To prevent this, you must write the whole expression out before expanding.

10.
$$(x + 8)(2x + y - 4)$$

$$2x^2 + xy - 4x + 16x + 8y - 32 = 2x^2 + xy + 12x + 8y - 32$$

11.
$$(x + 3)(x + 4)(x + 1)$$

$$(x^2 + 7x + 12)(x + 1) = x^3 + 8x^2 + 19x + 12$$

12.
$$(2x - 5)(x - 2)(x + 7)$$

$$(2x^2 - 9x + 10)(x + 7) = 2x^3 + 5x^2 - 53x + 70$$

13.
$$(x + 1)^3$$

$$(x+1)(x+1)(x+1) = (x^2 + 2x + 1)(x+1)$$
$$= x^3 + 3x^2 + 3x + 1$$

14.
$$(x + 2)^2(x + 5)$$

$$(x + 2)(x + 2)(x + 5) = (x^2 + 4x + 4)(x + 5)$$

$$= x^3 + 9x^2 + 24x + 20$$

Factorising

Factorise fully:

1.
$$12x + 15$$

$$3(4x + 5)$$

2.
$$27x - 18$$

$$9(3x - 2)$$

Expanding Polynomials (Answers)

3.
$$10y^2 + 28y$$

$$2y(5y + 14)$$

4.
$$14ab + 21a$$

$$7a(2b + 3)$$

5.
$$32x + 40y - 24$$

$$8(4x + 5y - 3)$$

6.
$$10x^2y - 15xy^2$$

$$5xy(2x - 3y)$$

7.
$$12a^3b^2 + 18a^2b^3 - 27ab^4$$

$$3ab^2(4a^2 + 6ab - 9b^2)$$

8.
$$a(b+c) + 5(b+c)$$

$$(a + 5)(b + c)$$

9.
$$x(y + 3) + 2(y + 3)$$

$$(x + 2)(y + 3)$$

10.
$$2r(a-4) - p(a-4)$$

$$(2r - p)(a - 4)$$

Factorising Quadratic Expressions (Answers)

Factorising: When a = 1

Factorise fully:

1.
$$x^2 + 7x + 10$$

$$(x + 2)(x + 5)$$

4.
$$x^2 - x - 6$$

$$(x + 2)(x - 3)$$

The coefficient of x in this question is -1.

2.
$$x^2 + 12x + 20$$

$$(x + 10)(x + 2)$$

5.
$$x^2 - 13x + 30$$

$$(x - 10)(x - 3)$$

3.
$$x^2 + 4x - 21$$

$$(x + 7)(x - 3)$$

6.
$$x^2 - 10x + 25$$

$$(x - 5)(x - 5)$$

This could also be written as $(x - 5)^2$.

Factorising: The Difference of Two Squares

Factorise fully:

1.
$$x^2 - 36$$

$$(x + 6)(x - 6)$$

4.
$$25a^2 - b^2$$

$$(5a+b)(5a-b)$$

2.
$$a^2 - 81$$

$$(a + 9)(a - 9)$$

5.
$$9x^2 - 100y^2$$

$$(3x + 10y)(3x - 10y)$$

3.
$$4x^2 - 9$$

$$(2x + 3)(2x - 3)$$

6.
$$x^4 - y^2$$

$$(x^2+y)(x^2-y)$$

Factorising Quadratic Expressions (Answers)

Factorising – When $a \neq 1$

Factorise fully:

1.
$$2x^2 + 11x + 12$$

$$2 \times 12 = 24$$

$$8 \times 3 = 24$$
 and $8 + 3 = 11$

$$2x^{2} + 11x + 12 = 2x^{2} + 8x + 3x + 12$$
$$= 2x(x + 4) + 3(x + 4)$$
$$= (x + 4)(2x + 3)$$

2.
$$3x^2 + 26x + 35$$

$$3 \times 35 = 105$$

$$3x^{2} + 26x + 35 = 3x^{2} + 5x + 21x + 35$$
$$= x(3x + 5) + 7(3x + 5)$$
$$= (x + 7)(3x + 5)$$

3.
$$4x^2 + 8x - 21$$

$$4 \times -21 = -84$$

$$4x^{2} + 8x - 21 = 4x^{2} + 14x - 6x - 21$$
$$= 2x(2x + 7) - 3(2x + 7)$$
$$= (2x + 7)(2x - 3)$$

4.
$$3x^2 - 19x + 20$$

$$3 \times 20 = 60$$

$$3x^{2} - 19x + 20 = 3x^{2} - 4x - 15x + 20$$
$$= x(3x - 4) - 5(3x - 4)$$
$$= (3x - 4)(x - 5)$$

Notice that the common factor for the second pair of expressions needed to be -5 so that the expressions inside the brackets matched.

Factorising Quadratic Expressions (Answers)

Completing the Square

Write each equation in completed square form, and then find the coordinates of the turning point.

1.
$$y = x^2 + 8x + 23$$

$$y = (x + 4)^2 + 7$$

$$(-4, 7)$$

2.
$$y = x^2 - 6x + 1$$

$$y = (x - 3)^2 - 8$$

$$(3, -8)$$

3.
$$y = x^2 + 4x - 6$$

$$y = (x + 2)^2 - 10$$

$$(-2, -10)$$

4.
$$y = x^2 + 3x + 9$$

$$y = (x + 1.5)^2 + 6.75$$
 (or fractional equivalent)

5.
$$y = x^2 - 5x - 8$$

$$y = (x - 2.5)^2 - 14.25$$
 (or fractional equivalent)

$$(2.5, -14.25)$$

6.
$$y = 2x^2 + 12x + 7$$

$$v = 2(x^2 + 6x) + 7$$

$$v = 2((x + 3)^2 - 9) + 7$$

$$y = 2(x + 3)^2 - 11$$

$$(-3, -11)$$

7.
$$y = 3x^2 + 12x + 2$$

$$y = 3(x^2 + 4x) + 2$$

$$y = 3((x + 2)^2 - 4) + 2$$

$$y = 3(x + 2)^2 - 10$$

$$(-2, -10)$$

8.
$$y = 2x^2 + 6x + 23$$

$$y = 2(x^2 + 3x) + 23$$

$$y = 2((x + 1.5)^2 - 2.25) + 23$$

$$y = 2(x + 1.5)^2 + 18.5$$

Linear Equations and Inequalities (Answers)

1. Solve the following equations:

a.
$$8(2x + 3) = 24$$

$$2x + 3 = 3$$

$$2x = 0$$

$$x = 0$$

d.
$$4(2x - 5) = 3(x + 2)$$

$$8x - 20 = 3x + 6$$

$$x = \frac{26}{5}$$

b.
$$\frac{3x-4}{2} = 5$$

$$3x - 4 = 10$$

$$3x = 14$$

$$x = \frac{14}{3}$$

e.
$$\frac{5x - 7}{x} = 9$$

$$5x - 7 = 9x$$

$$x = -\frac{7}{4}$$

c.
$$2(\frac{3(x+1)}{5}) = 6$$

$$\frac{3(x+1)}{5}=3$$

$$3x + 3 = 15$$

$$3x = 12$$

$$x = 4$$

f.
$$8 - \frac{3x}{2+x} = 10$$

$$-\frac{3x}{2+x}=2$$

$$-3x = 4 + 2x$$
 (or equivalent)

$$-5x = 4$$

$$x = -\frac{4}{5}$$

2. Solve the following inequalities:

a.
$$8x + 3 > 2(x + 5)$$

$$8x + 3 > 2x + 10$$

$$x > \frac{7}{6}$$

b.
$$\frac{2x-1}{7} \le 3$$

$$2x - 1 \le 21$$

$$x \le 11$$

c.
$$7 \le 4x + 5 < 19$$

$$2 \le 4x < 14$$

$$\frac{1}{2} \le x < \frac{7}{2}$$

d.
$$5(3 - 2x) \ge 1$$

15 -
$$10x$$
 ≥ 1

$$x \le \frac{7}{5}$$

3. Find the set of solutions which satisfies the following inequalities:

$$8x \ge 5 - x$$
 and $-4 < 3x + 1 \le 10$

Solving the first:

$$x \ge \frac{5}{9}$$

Solving the second:

$$-\frac{5}{3} < x \le 3$$

The set of solutions which satisfies both is $\frac{5}{9} \le x \le 3$