Graphs (Answers)

Equations of Straight-Line Graphs / Parallel and Perpendicular Lines

1. Complete the table:

Equation	Gradient	y-intercept
$y=3 x+7$	3	7
$y=2-x$	-1	2
$2 y=x+5$	$\frac{1}{2}$ or 0.5	$\frac{5}{2}$ or 2.5
$3 y+2 x=-1$	$-\frac{2}{3}$	$-\frac{1}{3}$
$y=-2 x$	-2	0
$y=\frac{3}{4} x-1$	$\frac{3}{4}$	-1

2. Find the equation of the line passing through the points with coordinates $(2,3)$ and $(4,1)$.
$m=\frac{1-3}{4-2}=-1$
$y=-x+c$
$3=-2+c$
$c=5$
$y=-x+5$
3. A line whose gradient is $\frac{1}{3}$ passes through the point $(-6,9)$. Work out the equation of this line, giving your answer in the form $a y+b x=c$, where a, b and c are integers.
$y=\frac{1}{3} x+c$
$9=\frac{1}{3} \times-6+c$
$9=-2+c$
$c=11$
$y=\frac{1}{3} x+11$
$3 y=x+33$
$3 y-x=33$
4. The diagram shows two straight lines. Are the lines perpendicular? Justify your answer.

Let m_{1} be the gradient of L_{1} and m_{2} be the gradient of L_{2}.
$m_{1}=\frac{9--3}{4--10}$
$=\frac{12}{14}$
$=\frac{6}{7}$

Rearrange the equation for L_{2} to make y the subject.
$y=-\frac{3}{2} x+\frac{7}{2}$
$m_{2}=-\frac{3}{2}$
$\frac{6}{7} \times-\frac{3}{2} \neq-1$ so the lines are not perpendicular.
5. Does the line with equation $2 x+5 y=-1$ pass through the point with coordinates $(2,-1)$?

Substitute $x=2$ and $y=-1$ into the expression $2 x+5 y$.
$2 \times 2+5 \times(-1)=-1$
Since this is equal to -1, as in the original equation, the line must pass through this point.

Quadratic Graphs

1. Consider the curve with equation $y=x^{2}+4 x-5$.
a. Find the coordinates of the point where this curve intersects the y-axis.
$y=0^{2}+4 \times 0-5=-5$
(0, -5)
b. Find the coordinates of the points where this curve intersects the x-axis.
$0=x^{2}+4 x-5$
$0=(x-1)(x+5)$
$x=1, x=-5$
$(1,0)$ and $(-5,0)$
c. Hence, sketch the graph of $y=x^{2}+4 x-5$, clearly indicating any points of intersection with the axes.

2. Consider the curve with equation $y=x^{2}+8 x-1$.
a. Find the coordinates of the turning point of this curve.

$$
\begin{aligned}
x^{2}+8 x-1 & =(x+4)^{2}-4^{2}-1 \\
& =(x+4)^{2}-17
\end{aligned}
$$

The coordinates of the turning point are (-4, -17)
b. State whether the turning point is a maximum or minimum. Justify your answer.

This must be a minimum since the coefficient of x^{2} is positive. It is u-shaped and so the turning point must be the lowest point of the curve.
3. Sketch the graph of $y=x^{2}+4 x-21$, clearly indicating any points of intersection with the axes and the location of the turning point of the curve.

$$
\begin{aligned}
& y=0^{2}+4 \times 0-21=-21 \\
& 0=x^{2}+4 x-21 \\
& 0=(x+7)(x-3) \\
& x=-7, x=3
\end{aligned} \quad \begin{aligned}
& x^{2}+4 x-21=(x+2)^{2}-2^{2}-21 \\
&=(x+2)^{2}-25
\end{aligned} ~ l y
$$

The turning point has coordinates $(-2,-25)$

4. Sketch the graph of $y=-x^{2}+7 x$, clearly indicating any points of intersection with the axes.

$$
\begin{aligned}
& y=-0^{2}+7 \times 0=0 \\
& 0=-x^{2}+7 x \\
& 0=-x(x-7) \\
& x=0 \text { or } x=7
\end{aligned}
$$

5. Sketch the graph of $y=2 x^{2}+17 x+8$, clearly indicating any points of intersection with the axes.

$$
\begin{aligned}
& y=2 \times 0^{2}+17 \times 0+8=8 \\
& 0=2 x^{2}+17 x+8 \\
& 0=(2 x+1)(x+8) \\
& x=-\frac{1}{2}, x=-8
\end{aligned}
$$

Quadratic Equations and Inequalities (Answers)

1. Solve by factorising:
a. $x^{2}-11 x+28=0$
c. $y^{2}+4 y-35=2 y$
$y^{2}+2 y-35=0$
$(y-5)(y+7)=0$
$y=5, y=-7$
b. $3 x^{2}-16 x-12=0$
$(3 x+2)(x-6)=0$
$x=-\frac{2}{3}, x=6$
d. $6 n^{2}-6 n=-n^{2}$
$7 n^{2}-6 n=0$
$n(7 n-6)=0$
$n=0, n=\frac{6}{7}$
2. Solve the inequalities by sketching the graph:
a. $x^{2}+12 x+32 \geq 0$

$(x+8)(x+4)=0$
$x=-8, x=-4$
The graph of $y=x^{2}+12 x+32$
is shown as:
$x \leq-8, x \geq-4$
b. $x^{2}-2 x-8<-x-2$

c. $4 x^{2}+20 x-11 \leq 0$

$$
\begin{aligned}
& x^{2}-x-6<0 \\
& (x-3)(x+2)=0 \\
& x=3, x=-2
\end{aligned}
$$

The graph of $y=x^{2}-x-6$
is shown as:
$-2<x<3$
$(2 x-1)(2 x+11)=0$
$x=\frac{1}{2}, x=-\frac{11}{2}$
The graph of $y=4 x^{2}+20 x-11$
is shown as:
$-\frac{11}{2} \leq x \leq \frac{1}{2}$
d. $8 x^{2}+9 x>2 x$

$$
\begin{aligned}
& 8 x^{2}+7 x>0 \\
& x(8 x+7)=0 \\
& x=0, x=-\frac{7}{8}
\end{aligned}
$$

The graph of $y=8 x^{2}+7 x$
is shown as:
$x<-\frac{7}{8}, x>0$
3. Solve by completing the square, writing surds in their simplest form:
a. $x^{2}+8 x+3=0$
b. $x^{2}+3 x-7=0$
$(x+4)^{2}-13=0$
$(x+4)^{2}=13$
$x+4= \pm \sqrt{13}$
$x=-4 \pm \sqrt{13}$
$\left(x+\frac{3}{2}\right)^{2}-\frac{37}{4}=0$
$\left(x+\frac{3}{2}\right)^{2}=\frac{37}{4}$
$x+\frac{3}{2}= \pm \sqrt{\frac{37}{4}}$
$x=-\frac{3}{2} \pm \sqrt{\frac{37}{4}}$
$x=-\frac{3}{2} \pm \frac{\sqrt{37}}{2}$
c. $2 x^{2}+12 x+1=0$
d. $x^{2}+16 x+3=-9$
$2\left(x^{2}+6 x\right)+1=0$
$x^{2}+16 x+12=0$
$2\left((x+3)^{2}-9\right)+1=0$
$2(x+3)^{2}-17=0$
$2(x+3)^{2}=17$
$(x+3)^{2}=\frac{17}{2}$
$x+3= \pm \sqrt{\frac{17}{2}}$
$x=-3 \pm \sqrt{\frac{17}{2}}$
$(x+8)^{2}-52=0$
$(x+8)^{2}=52$
$x+8= \pm \sqrt{52}$
$x=-8 \pm \sqrt{52}$
$x=-8 \pm 2 \sqrt{13}$

The Quadratic Formula (Answers)

1. Solve $2 x^{2}+5 x+1=0$, giving your answers correct to 3 significant figures.
$x=\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times 1}}{2 \times 2}$
$x=-2.28, x=-0.219$
2. Solve $5 x^{2}+2 x=19$, giving your answers correct to 3 significant figures.
$5 x^{2}+2 x-19=0$
$x=\frac{-2 \pm \sqrt{2^{2}-4 \times 5 \times(-19)}}{2 \times 5}$
$x=-2.16, x=1.76$
3. Explain why the graph of the equation $y=x^{2}+4 x+9$ does not intersect the x-axis.

Use the discriminant $\Delta=b^{2}-4 a c$
$\Delta=4^{2}-4 \times 1 \times 9$
$\Delta=-20$
$\Delta<0$
Since the discriminant is less than zero, there are no real solutions to the equation $x^{2}+4 x+9=0$ and so the graph does not intersect the x-axis.

Simultaneous Equations (Answers)

1. Solve each pair of simultaneous equations:
a. $x+y=14$
$2 x-y=16$
Add the equations:
$3 x=30$
$x=10$
$10+y=14$
$y=4$
$x=10, y=4$
c. $2 x+5 y=26$
$y=x+1$
$2 x+5(x+1)=26$
$7 x+5=26$
$7 x=21$
$x=3$
$y=3+1$
$y=4$
$x=3, y=4$
b. $3 x+2 y=-4$
$2 x+y=-3$
d. $x^{2}+y^{2}=10$
$y=x+2$

Substitute the second equation into the first. You can use elimination, but you will need to rearrange first.

Multiply the second equation by 2, then subtract the equations:
$4 x+2 y=-6$
$x=-2$
$2 \times(-2)+y=-3$
$-4+y=-3$
$y=1$
$x=-2, y=1$
Substitute the second equation into the first.
$x^{2}+(x+2)^{2}=10$
$2 x^{2}+4 x+4=10$
$2 x^{2}+4 x-6=0$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
$x=-3$ or $x=1$
$y=-3+2$ or $y=1+2$
$y=-1$ or 3
$x=-3$ and $y=-1, x=1$ and $y=3$
e. $2 x^{2}=y^{2}-8$
$y-x=2$
Rearrange and then substitute the
second equation into the first.
$y=x+2$
$2 x^{2}=(x+2)^{2}-8$
$2 x^{2}=x^{2}+4 x+4-8$
$x^{2}-4 x+4=0$
$(x-2)(x-2)=0$
$x=2$
$y=2+2=4$
$x=2, y=4$

